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Optimization-Based Adaptive Optical Correction for
Holographic Projectors

Andrzej Kaczorowski, George S. Gordon, Ananta Palani, Stanistaw Czerniawski, and Timothy D. Wilkinson

Abstract—A novel method of correcting the aberrations of holo-
graphic projectors is presented. The method employs an optimiza-
tion algorithm to determine an aberration-correcting phase mask
composed of 13 Zernike Polynomials. The mask can be used there-
after to correct every image produced by the projector. Two op-
timization algorithms are demonstrated: a hybrid genetic steepest
descent algorithm and a heuristic variant of steepest descent. The
primary advantage of these methods is that no modifications of
the standard holographic projector are required. Furthermore, the
methods are fully automated. They are evaluated on two projectors
with different Spatial Light Modulator flatness profiles for three
wavelengths. First, the correction is demonstrated for both projec-
tors on a green wavelength. It is then adapted for red and blue
wavelengths by rescaling the mask and adjusting for chromatic
aberration. The hybrid genetic-steepest-descent algorithm is com-
pared with the heuristic steepest descent algorithm. On average,
the hybrid algorithm is found to give better and more reliable cor-
rection than the heuristic steepest descent algorithm while taking
50% longer to terminate. The method is also compared with non-
automated interferometric flatness measurements and is found to
produce improved results.

Index Terms—Adaptive optics,
modulators (SLMs).

holography, spatial light

I. INTRODUCTION

PATIAL LIGHT modulators (SLMs) have been suc-

cessfully deployed for use in conventional projectors as
imaging devices [1]. However, they are also extensively used
in a variety of applications, including optical correlators [2],
[3], fiber-optic systems [4], [5], and Fourier projectors [1],
[6]-[8], which rely on their ability to operate in the Fourier
plane and display holograms. Holographic imaging systems
present numerous advantages over conventional ones, such as
high efficiency, potential for miniaturization, and aberration
correction [1], [6], [7]. Diffraction is the basis of holography
and requires a high spatial and temporal coherence of light to
achieve high-quality performance.
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Fig. 1. Effect of non-flatness on a coherent beam of light: (a) flat surface, (b)
non-flat surface.

Optical aberrations of any sort introduce unwanted spatially
varying phase changes that degrade images produced using co-
herent light. In systems using SLMs, the non-flatness of the sur-
face is usually the most significant cause of aberration, given the
ready availability of high-quality static optical elements (lenses,
mirrors etc.). Conventional imaging systems typically use inco-
herent illumination and, as a result, they have a high tolerance
for flatness errors on the order of few micrometers [1]. By con-
trast, holographic imaging systems, such as Fourier projectors,
have a more stringent requirement for flat optical surfaces [9].

When light reflects off a flat surface, the wavefront is pre-
served, as shown in Fig. 1(a). When light reflects of a surface
that is not flat as shown in Fig. 1(b), its phase changes by a factor
of p= 27?% radians, where d is the difference in flatness and A
is the wavelength of light. Assuming that the difference in flat-
ness is 2 pm (a large, but still acceptable value in conventional
projectors [1]) and the wavelength of light is 500 nm, the phase
change would be 167 radians—eight wavelengths.

This is a substantial error that degrades the spatial coherence
of a beam, and will severely reduce the quality of an image.
In order to produce an image of high quality, the deviation in
flatness should be substantially smaller than the wavelength of
light. A common rule of thumb suggests that the peak-valley
aberration should be less than a quarter of the wavelength
(Rayleigh’s quarter wavelength rule) [9].

This problem has been addressed previously using an inter-
ferometer to measure the interference fringes of light reflected
from the SLM to characterize the surface non-flatness [1]. How-
ever, this method has a number of disadvantages—most notably,
it requires the use of a separate experiment, which may have
different aberrations that the ones present in the actual Fourier
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Projector. Furthermore, the fringe patterns must be manually de-
coded into a phase mask, which is a lengthy procedure.

Several other systems have successfully used deformable
mirrors (DMs) to correct for non-flatness and other aberrations
[10], [11]. For a Fourier projector, this approach would require
incorporating a deformable mirror into the setup, which would
add cost and complexity.

We present a novel way to characterize the aberrations of
a Fourier projector using a feedback-loop mechanism. In this
work, the flatness is not measured directly, but instead, its ef-
fects on the image, in particular the physical size of a single ef-
fective pixel, are measured and characterized. This incorporates
not only the non-flatness of the SLM but also the aberrations of
other components in the setup such as the laser, lenses, beam-
splitters, and mirrors.

First, a brief theoretical discussion of aberration correction
using holograms is presented. Next, the method of judging the
amount of aberration present in the image is introduced. This
provides an accurate measure of the quality of a spot displayed
on the screen, despite effects such as saturation and limited bit-
depth often found in low-cost webcams.

Next, it is necessary to determine a corrective phase mask
comprising a weighted sum of Zernike polynomials for which
the value of the fit function is the smallest. This is formulated
as an optimization problem and two algorithms are considered:
a heuristic variant of steepest descent and a hybrid genetic-
steepest descent algorithm.

Finally, the different optimization algorithms are compared.
Heuristic Steepest Descent is found to perform quite well, but
suffers from a tendency to become stuck in local minima, i.e.,
a correction that is not ideal, but is better than all the possi-
bilities nearby. The hybrid genetic-steepest-descent is found to
converge more reliably, because it explores the correction space
in pseudo-random manner. However, it is found to take 50%
longer to converge than the heuristic steepest descent.

II. THEORETICAL BACKGROUND

A. Aberrations in Holography

The replay field of an image in the presence of aberrations
can be represented as [4]

(u,v) = F [B(a, y)H(z, y)e e | (1)
where %(u,v) is the replay field, H{x,y) is the hologram,
B(x, y) is the illumination profile of a laser, ¢ (x, y) is the phase
profile (aberrations) and F[] denotes the Fourier Transform
operation.

In this work, it is assumed that the illumination is uniform.

In order to correct the distorted replay field, a corrective phase
profile must be determined that compensates ¢ (, y). This cor-
rective profile can be approximated as a linear combination of
Zernike Polynomials.

Zernike Polynomials are widely used in optics, because they
correspond to common aberrations, such as defocus, astigma-
tism, coma, spherical aberration and higher-order aberrations
[13]. They also form a complete, orthogonal set, which means
that any smooth function can be approximated up to an arbi-
trary precision given a large enough number of terms. We will

use this property and rewrite the corrective phase profile as a
sum of Zernike Polynomials:

N
(e, y) =21y 2,Zi(x,y)
i=4
where Z; is the ¢th Zernike Coefficient and Z; is the ith Zernike
Polynomial (using a single-numbering scheme described by
Wyant and Creath [13] and used in ZEMAX as Zernike Fringe
Phase [14]) and N is the index of the last term used in the
expansion. We have ignored first three terms: piston and x- and
y-tilt, hence, the summation starts at z4 (focus coefficient).

B. Aberration-Corrected Hologram Generation

The image used as a reference is a single point in the replay
field. The Fourier Transform of a single pixel is a grating, or a
continuous phase surface if the phase can be unwrapped [1].

Therefore, the complex corrected hologram of the replay field
can be rewritten as such:

uv

H(’LL‘, y) = eiq)pixel(xvy)e*iﬁ" (;L‘, y)

uv

where H is the complex hologram, ¢ is the continuous

i . pixel % *
phase surface corresponding to a pixel at a position (u, v):
};Yxel(xv y) =27 ( T+ Y+ @point)
umax vmax

and ¢(x, y) is the previously mentioned aberration-correcting
phase mask composed of a weighted sum of Zernike Polyno-
mials.

The complex hologram is then quantized due to the binary
phase modulation of the SLM:

. _J1,  real(H(x,y)) >0
hiz,y) = { ~1, real (H(w,yy)) < 0.

To find the optimal correction hologram, we use a correction
algorithm to find the values of z; that minimize the fit function.

Once these are found, the mask can be straightforwardly ap-
plied thereafter to correct aberrations in every hologram gener-
ated for that particular projector:

H(w’ y) = Huncorr («7/'7 y)e”'“’(l’:y) (2)

where Hyncorr (2, 9) is the arbitrary complex hologram to be
corrected.

In order to prove that a hologram generated this way will
correct the aberrations, one can apply (2) to (1):

Y(u,v) = F [B(wyy)Huncorr(CU,y)eiv(w‘y)eiw(%y)] .

It is noticed that phase aberrations with opposite signs cancel
each other out inside the exponent, leaving the replay field as a
Fourier Transform of the original, uncorrected hologram (as if
the aberrations were not present):

¢'(U7 U) =F [B(.T, y)Huncorr(ma y)] :

III. CORRECTION PROCEDURE

As stated previously, we are trying to find a set of Zernike Co-
efficients for which the value of a fit function, representing the
degree of residual aberration after correction, is the smallest. To
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Fig. 2. Mask used to calculate the spread of pixels around the center. Points
further from the center contribute more to the sum.
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Fig. 3. Examples of points with different corrections. The respective fit func-
tion values of points are: (a) = 4.7 x 107, (b) = 1.5 x 10% and (c) = 3.2.

find a solution to this optimization problem, both a fit function
and an appropriate optimization algorithm must be determined.

A. Fit Function

It is well known that an aberrated point will have lower peak
intensity than the aberration-free point [12]. However, using a
webcam with a bit-depth of 8, this information alone is insuf-
ficient for finding a perfect correction. Although this problem
could be solved by using a sensitive photodiode, tilt aberration
can shift the pattern and the results will become misleading. The
tilt can also be corrected, but it would add another two other de-
grees of freedom.

In order to use a webcam for characterization of aberrations,
a metric correlated with pixel’s spread around the center is
introduced

T = Wplye X Wgreen X O'/q

where wplue and wWgreen are weighting factors based on the
point’s intensity and o is the weighting factor based on the
spread of pixels around the center. When a point has high peak
intensity and the pixels are circularly spread around the center
within a small radius, the value of a fit function will be small.
The normalization factor g is chosen for convenience.

Term wy)y. arises from the realization that when the intensity
of light is too high on the sensor to be recorded in the green
channel, we begin to see high intensity in the other channels as
well (blue has been chosen arbitrarily). The functional form of
this weighting factor is

if maX(Iblue) > 200

L,
Whlue = { 100, otherwise

Wgreen N turn gives smaller values to the points for which the
intensity in the green channel is higher. Its functional form is

Wgreen = [256 - ma‘X(Igl‘een)] 2
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When the highest value in the green channel is maximum
(255), Wgreen €quals 1, otherwise it grows quadratically.

In order to calculate the spread of pixels around the center,
we multiply the quantized image with the mask (Fig. 2)

maSkry = \/(CL - l’cent)z + (y - ycent)z +1

where (Zcent, Yeent) are coordinates of the center of the pattern,
which typically differ from the center of the image.
The pixel spread, o is then equal to

i=Zmax
J=VYmax

g = Z Iquant(iyj) X maSk(i + :L)ofsyj + yofs)
izo
where (Zof:Yofs) 1s chosen so that the center of the mask over-
lays the center of the pattern and Iguant (4, j) is the quantized
green channel of the image

P ]. .f‘[uan ,'7/' >I
uant(laj) = { o Hig t(l J) th

I )
0, otherwise.

q

The threshold Ii;, can be adjusted so that good results are
obtained. In our case, 20% of maximum intensity was chosen
using trial and error method.

Equipped with this fit function we can examine the sample
points, as shown in Fig. 3. It can be observed that there is a
strong correlation between the quality of the point and the fit
function value.

B. Hybrid Genetic-Steepest Descent Algorithm

The optimization method used here to find an optimal con-
figuration of Zernike Coefficients is a hybrid between a Genetic
Algorithm (GA) and Steepest Descent algorithm (SD). From
initial experiments, GA was found to be very effective at finding
new correction candidates, but was slow to optimize existing
candidates. At that point SD was introduced to refine existing
candidates to find the best corrections that lay nearby in the so-
lution space.

Genetic mutations are an essential part of every genetic algo-
rithm. Here, the role of mutations was replaced partially with SD
optimization and partially by introducing purely random candi-
dates into the population. The algorithm is illustrated in Fig. 4.

Each iteration of the algorithm produces 10 candidates, from
which the best individual is chosen to use as the best correction
found so far.

1) Genetic Optimization: The first step in the implemented
genetic algorithm is non-deterministic tournament selection
[15], [17]: among all the candidates a small number is ran-
domly chosen (5-20, which corresponds to 0.2%—-0.8% of the
population, gives best results) and candidates are chosen with
an appropriate probability. The one with the best value of the
fit function is most likely to be chosen. The chosen candidate
will become one of the parents. A similar procedure is used to
choose the second parent.

Once appropriate parents have been selected, pairs of par-
ents need to be ‘mated’: that is, have their parameters combined
to form new potential offspring (solutions). In the majority of
Genetic Algorithms, one or two children are produced from
each pair of parents [11], [15], [16]. This is typically achieved
by randomly selecting a single crossover point and swapping
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Generate random initial population

l¢

Display correction holograms sequentially
on the projector and take pictures

For every picture, calculate value of the fit

function

¥

‘ Choose 10 best candidates ‘

Enough iterations?

GA optimization

v

SD optimization of the 10 best candidates

Fig. 4. Flow of a hybrid genetic-steepest descent algorithm.

TABLE 1
NUMBER OF PERMUTATIONS DEPENDING ON THE TOTAL NUMBER OF
‘VARIABLES

Number of variables Number of permutations

i ()

2 2
4 6
6 20
8 70
10 252
12 926

values from the parents after that point. However, with a single
crossover at a random position, there is a very little chance that
a resulting child would bring a positive improvement. Here,
we present a different approach, intended to quickly generate
a wider variety of children than standard approaches. In this
method all the possible combinations of parents’ parameters are
generated producing children with on average half their param-
eters from each parent.

If we have 2n parameters, we must then choose n parameters
to switch. The number of ways this can be done is the number

2 .
of permutations: ;l) , shown in Table I.

It can clearly be seen that as the number of coefficients in-
creases, the number of permutations also rapidly increases. We
would like to incorporate as many parameters as possible. How-
ever, when we have more than 8 parameters, the numbers be-
come impractically large and it would be too time consuming
to test all the possibilities, taking into account that multiple
crossovers need to be performed in a single iteration.

Therefore, Zernike coefficients have to somehow be put into
8 groups. The easiest way to do this is to identify the type of

TABLE 11
GROUPING ZERNIKE COEFFICIENTS Z4—216 INTO 8 GROUPS

Group Aberration name Zernike Coefficients
number
1 Defocus z4
2 1st Order Astigmatism z5, 26
3 1st Order Coma 77,78
4 1st Order Spherical 79
5 1st Order Trefoil z10,z11
6 2nd Order Astigmatism 712,713
7 2nd Order Coma z14,z15
8 2nd Order Spherical z16
for zIndex = 4 to 16
for mult = -1 to 8

set zOut to z
set value to z(zIndex)
if value<threshold
set value to ©.125
end
set zOut(z) to value*mult/7
generateHologram(zOut)
end
end

Fig. 5. Pseudocode of the heuristic steepest descent algorithm.

aberration they correspond to and group them accordingly as
shown in Table II.

The next step in the algorithm is the addition of random can-
didates into the solution population, which is used to introduce
new genetic material into the system. This procedure has the
same effect as introducing genetic mutations.

The number of random candidates should not be too large,
otherwise the population will be purely random and this is not
desirable. In this research the percentage of random candidates
to the whole population was chosen to be 10% of the total pop-
ulation size.

It should be noted that the genetic algorithm presented here
has been partially optimized for speed by generating a large
number of holograms at once (and hence, minimizing the
kernel’s overhead). However, it is certain that other variants of
Genetic Algorithms reported in literature [11], [14], [15] would
also be suitable for the purpose of correction.

2) Heuristic Steepest Descent: Traditional steepest descent
optimization relies on the ability to compute the derivative of
the fit function. Here, the fit function is discontinuous at points
where the light intensity changes. In order to avoid this problem,
a novel heuristic steepest descent algorithm (HD) is proposed.

In the novel algorithm, the gradient is not calculated, but in-
stead the algorithm tests all the principal directions in 13-dimen-
sional space.

Let z(4) to z(16) be the Zernike Coefficients of the hologram
to optimize and zOut(4) to zOut(16) coefficients of the output
optimized hologram. Then the algorithm can be presented using
pseudocode in Fig. 5.

Therefore, for each parameter: z(4) to z(16), the algorithm
will test 9 possibilities: —1/7,0,1/7,2/7...,1,11/7 of the
original value, leaving the other coefficients unchanged. If a
particular coefficient is smaller than some threshold, its value
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webcam

SLM

Fig. 6. Fourier projector facing a webcam (the same design as used by Freeman
in [1]). The laser beam is expanded and collimated by lenses L1 and L2, reflected
oft a beamsplitter (BS), is modulated by the SLM in reflection mode, and is then
demagnified by the combination of lenses L2 and L3. In plane P2 we see a re-
production of a hologram (with introduced phase aberrations), which undergoes
diffraction and forms an image on the webcam.

TABLE III
TIMING OF PARTICULAR TASKS IN THE HYBRID GENETIC ALGORITHM

Task Total time Time per hologram
(s) (ms)

Time of a single iteration 217 87.5

Hologram generation 13 52

Picture taking 166 67

Processing images 38 15.3

will be set to some defined number (0.125 was chosen as a
result of a initial experiments).

IV. EXPERIMENTAL SETUP

The setup consists of a Fourier projector and a webcam placed
in front of it, shown in Fig. 6.

The main assumption made throughout this paper is that in
the center of the replay field, the aberrations of the front lens
(L3 in Fig. 6) are small and can be neglected. Therefore, all the
aberrations will come from the non-flatness of the SLM and the
imperfections in the other components of the setup, such as other
lenses and mirrors.

A. Implementation and Timing

The hologram generation is implemented using nVidia’s
Compute Unified Device Architecture (CUDA) [18], resulting
in very high speeds (5.2 ms per hologram). However, the
majority of the time in each iteration of the algorithm is spent
displaying holograms and taking pictures, as shown in Table III.
This step could be further optimized using a faster webcam and
by accessing the graphics memory directly.

B. Comparison of Correction Algorithms

In order to properly evaluate the performance of the hy-
brid genetic steepest descent and heuristic steepest descent
algorithms presented here, it is necessary to compare their
performance against conventional algorithm for a wide range
of system aberrations. In reality, only two projectors with
predetermined aberrations were available. In order to simulate
a wider range of aberrations, many different random starting
points (i.e., initial sets of Zernike Coefficients) are selected
and the different algorithms are run using these initial values.
Due to the fact that aberrations here are modeled as a linear
superposition of Zernike polynomials, using a different starting
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(a) (b)

Fig. 7. Projector 1: uncorrected point (a) and a corrected one (b). The respective
fit function values are: (a) = 6.25 x 107, (b) = 5.22.
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Fig. 8. Projector 1: uncorrected point (a) and a corrected one (b); surface view.

Light intensity (arb. units)
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point is equivalent to introducing an arbitrary optical aberration
into the system and then attempting to correct it.

We used 15 random starting points to test the performance
of the hybrid GA and heuristic SD in each case. The GA was
allowed to run for 100 iterations, while HD was allowed up to
1000.

V. RESULTS

The algorithm is tested on two projectors and for three wave-
lengths. For the second projector, the result of the feedback loop
is compared with the flatness of the SLM that was previously
measured using an interferometric technique [1].

A. First Projector

The correction of this projector took 80 iterations = 5 hours.

In Fig. 7(a) we can see the uncorrected image of a point. Point
in Fig. 7(b) is the image of the same point with the applied cor-
rection and the improvement in quality is evident. Fig. 8§ com-
pares the intensity profiles of the two points and it is seen that
the corrected point has high peak intensity and is quite narrow,
whereas the uncorrected point has lower peak intensity (60%)
and is smeared out.

As stated previously, the correction should be independent of
the front lens. To test this hypothesis, we have taken pictures
using two different lenses, one good quality lens and one cheap
ball lens. The results can be seen in Figs. 9 and 10. A test image
is a square with central pixels forming a cross in the middle
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(b)

Fig. 9. High quality CCD lens; square with a 5-pixel cross in the middle: (a)
uncorrected versus (b) corrected.

(a (b)

Fig. 10. Low-quality ball lens; (a) uncorrected versus (b) corrected.

(1 pixel apart). This way, we can test various properties of the
image, such as horizontal lines, vertical lines, and interactions
between single pixels.

It can be observed that the correction is similar for high-
quality CCD lens (Fig. 9) as for the cheap ball lens (Fig. 10).
In both cases the image is highly improved by correction. In
particular it is visible that the central pixels are now separated
from each other. The resultant corrective phase mask is shown in
Fig. 11. It can be seen that one of the corners has a value close to
8. This is an error that results from the fact that we employ only
13 Zernike Polynomials to form a phase mask and higher order
terms are necessary to control edge values. This error probably
results in slight blurring of the image. However, less than 3%
of the hologram is affected by this error, so its effect is likely to
be small. This is verified by the quality of the corrected images
[Figs. 9(b) and 10(b)], which do not exhibit substantial blurring.

It is also worth noticing that the SLM’s irregularity, in
classical terms, is not very significant. Excluding the erro-
neous corner, the peak-valley distance is of the order of one
wavelength (~530 nm) and it results in complete blurring of
the image to the extent that the shape of the image becomes
unrecognizable.

B. Scaling of the Mask for Red and Blue Wavelengths

In order to project full-color images, as in real projectors, it
is necessary to display three single-color images (red, green,
and blue) by illuminating three holograms corrected using
three phase-masks with appropriately colored lasers [6], [7].
This can be achieved by sequentially displaying the holograms
on a single device and switching between illumination lasers.
At a sufficiently high frame rate, the human eye will seam-
lessly merge these three single-color images together to form
a full-color image. Ideally, it should be possible to adapt the
aberration-correcting phase mask for these other wavelengths.

As stated in Section I, the phase change is proportional to
the flatness difference as well as to the wavelength. Therefore,

T ; “ -

7~~~
= 5.
i 4
Q
172}
é 0. 2
S 0
0
2
-4

1000 1000
Hologram coordinates

Fig. 11. Surface view of the phase mask for the first projector.

(b)

Fig. 12. Red wavelength correction: (a) the same correction as green versus
(b) rescaled mask.

(b)

Fig. 13. Rescaled mask for blue light: (a) the rescaled and (b) re-focused (b).

if the correction was made for wavelength A\; and some other
wavelength A» is used to display the image, the mask has to
be rescaled by the factor i—’f This procedure was successful in
adapting the mask for red wavelength (Fig. 12).

With blue wavelength, due to a chromatic aberration of the
lens, the image appeared out of focus [Fig. 13(a)]. This effect
was easily eliminated by a simple re-focusing (adding the fourth
Zernike Polynomial). After this procedure was carried out, the

image was fully corrected [Fig. 13(b)].

C. Second Projector

The second projector tested had previously had the non-flat-
ness of the SLM measured using interferometric techniques.
Therefore, it is possible to use this as a reference to evaluate
the performance of the new algorithm.
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Fig. 14. Projector 2: (a) uncorrected point; (b) interferometric correction; and
(c) feedback loop correction.

m
(b) ©

Fig. 15. Projector 2: (a) uncorrected shape; (b) interferometric correction; and
(c) feedback loop correction.
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Fig. 16. Surface view of the phase mask: feedback loop mask (a) and interfer-
ometric mask (b).

The two flatness corrections are compared in Fig. 14 and
it can be seen that feedback loop system [Fig. 14(c)] yields
slightly better results than interferometric method [Fig. 14(b)]
producing a more regular point with higher peak intensity.

Fig. 15 shows the correction of a square. Again, the feedback
loop system yields a slightly better correction.

The corrective phase mask can be seen in Fig. 16(a) and can
be compared with the mask determined from interferometric
methods [Fig. 16(b)].

It is noted that the masks are broadly similar in shape. The
feedback-loop system mask has higher curvature, which is due
to the use of the limited number of Zernike Polynomials, but
the superior results would suggest this is closer to the optimal
correction. Additionally, the feedback-loop approach has the ad-
vantage of being fully automated.

VI. COMPARISON OF OPTIMIZATION ALGORITHMS

The results for the fit function value versus time can be seen
in Fig. 17 and the close-up in Fig. 18.

In most of the trials, convergence to the optimal correction
is achieved. However, as seen in Fig.17, two trials of the GA
test and one trial of HD test did not converge. This is likely
the result of various internal and external factors. One poten-
tial external factor is the occasional failure of the laser used in
the experiment. A likely internal factor is the domination of the
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Fig. 17. Results of multiple corrections from Hybrid Genetic Algorithm (GA)
and Heuristic Steepest Descent Algorithm (HD).
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Fig. 18. Results of multiple corrections from Hybrid Genetic Algorithm (GA)
and Heuristic Steepest Descent Algorithm (HD)—a close-up.

TABLE IV
STATISTICAL EXAMINATION OF HYBRID GENETIC-STEEPEST DESCENT
ALGORITHM AND MODIFIED STEEPEST DESCENT

Property GA MD
Minimum fit function value 2.04 1.96
Average fit function value 238 2.54
Standard deviation of fit function value 0.28 0.34
Average convergence time (hours) 38 2.6
Standard deviation of convergence time (hours) 1.7 1.5

population by similar solution candidates. This is partially ad-
dressed by introducing non-deterministic tournament selection
in the GA and so, it is expected, that if left for longer, GA would
eventually converge. However for HD it is rather more difficult
to escape local minima.

The measured performance of the two proposed algorithms
are summarized in Table I'V. It can be seen that although the best
GA correction is slightly worse than best HD correction, GA
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performs slightly better than HD on average (smaller fit func-
tion mean and standard deviation). However, that comes at the
expense of 50% longer convergence time (3.8 hours compared
to 2.6 hours for HD).

Given that in reality the aberrations in a projector would not
need to be corrected often, 4 hours is a reasonable time. Using
state-of-the-art hardware and software, this time could be re-
duced to less than 1.5 hours.

VII. CONCLUSION

Two optimization-based methods of correcting aberrations
coming from non-flat SLMs in Fourier projectors are presented.
A specialized fit function, tailored to CCD sensors of limited
bit depth, is used as the objective function that represents the
degree of aberrations present. It takes into account two proper-
ties of aberrated single pixels: the peak intensity and the spread
of pixels around the center. Using this fit function, a corrective
phase mask that compensates aberrations is determined. Here,
the mask is represented as a weighted sum of Zernike polyno-
mials. These functions are well suited for this purpose, because
they correspond to common optical aberrations. We approxi-
mate an aberration-correcting phase mask using 13 low-order
Zernike Polynomials. The problem of aberration correction is
then reduced to finding a point in 13-dimensional space of pos-
sible Zernike weightings that minimize the fit function. This is
an optimization problem, with the aim of finding the mask pro-
ducing the minimum value of fit function in the shortest period
of time. To solve this optimization problem, a heuristic variant
of the Steepest Descent algorithm, termed Heuristic Steepest
Descent is introduced.

Another class of optimization algorithms that work well with
similar types of problems are Genetic Algorithms. Here, we
present a hybrid of a Genetic Algorithm (GA) and our Heuristic
Steepest Descent Algorithm. GA is used in order to produce new
correction candidates and HD is used to optimize existing can-
didates, thereby combining the most powerful features of both.
The presented Hybrid GA algorithm is tested on two projectors
and it is shown to produce high quality corrections after 5 hours
for the first projector and 3.9 hours for the second. The correc-
tive mask found by the algorithm for a given wavelength can be
adapted for red and blue wavelengths by rescaling and compen-
sating for defocus introduced by chromatic aberrations in the
lens.

To test the performance of these two algorithms on different
systems, they are both tested using several different starting
points to mimic the effect of systems with different aberrations.
The GA is found to perform better on average, with higher
quality corrections produced, but at a cost of 50% slower
convergence time.
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